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On the Convergence of Kikuchi’s Natural Iteration
Method
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In this article we investigate on the convergence of the natural iteration method,
a numerical procedure widely employed in the statistical mechanics of lattice
systems, to minimize Kikuchi’s cluster variational free energies. We discuss a
sufficient condition for the convergence, based on the coefficients of the clus-
ter entropy expansion, depending on the lattice geometry. We also show that
such a condition is satisfied for many lattices usually studied in applications.
Finally, we consider a recently proposed class of methods for the minimization
of Kikuchi functionals, showing that the natural iteration method turns out as
a particular instance of that class.

KEY WORDS: Cluster variation method; natural iteration method; statistical
inference; constrained optimization.

1. INTRODUCTION

The cluster variation method (CVM) is a powerful approximate technique
for the statistical mechanics of lattice systems, which can improve the sim-
ple mean field and Bethe approximations, by taking into account correla-
tions on larger and larger distances. It was first proposed by Kikuchi in
1951(1) as an approximate evaluation of the thermodynamic weight, and
since then it has been reformulated several times,(2–4) mainly to clarify the
nature of the approximation and to simplify the way to work it out. Quite
a recent formulation(4) shows that the CVM consists of a truncation of
a cumulant entropy expansion. Each cumulant is associated to a cluster
of sites and the truncation is justified by the expected rapid vanishing of
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the cumulants upon increasing cluster size. In this way, the CVM can be
viewed as a hierarchy of approximations, each one defined by the set of
maximal clusters retained in the cumulant expansion, usually denoted as
basic clusters. If pairs of nearest-neighbor sites are chosen as basic clusters,
the CVM coincides with the Bethe approximation. Generally, using larger
basic clusters improves the approximation, even if convergence of the cum-
ulant expansion to the exact entropy has been rigorously proved just in a
few cases.(3,5)

Due to its relative simplicity and accuracy, the CVM is widely used in
every kind of statistical mechanical applications, to determine both ther-
modynamic properties(6–8) and phase diagrams.(9–12) CVM results gener-
ally compare well with those of Monte Carlo simulations,(10,11,13) as well
as experimental ones.(6,8,9,13–15) Making use of suitable series of CVM
approximations, it is also possible to extrapolate quite accurate estimates
of critical exponents.(16–19) Recently, it has been shown that the belief
propagation algorithm, an approximate method for statistical inference,
employed for a lot of technologically relevant problems (image(20) and sig-
nal processing,(21) decoding of error-correcting codes,(21,22) machine learn-
ing(22)), is equivalent to the minimization of a Bethe free energy for
statistical mechanical models defined on graphs.(23) This fact has opened
new research areas both to application of the CVM as an improvement
of the approximation,(23) and to analysis of efficient minimization algo-
rithms,(24–26) the latter mainly because belief propagation sometimes fails
to converge.

Let us introduce the problem from the CVM point of view. Once the
approximate entropy (and hence free energy) for the chosen set of basic
clusters has been obtained, one has to face the problem of minimizing
a nonconvex functional in the basic cluster probability distributions. An
algorithm for minimizing such a functional has been proposed by Kikuchi
himself,(27) and is known as natural iteration method (NIM). A proof of
convergence for this algorithm has been given in the original paper, essen-
tially for the Bethe approximation, which can be easily extended to the
Husimi tree.(28) Nevertheless, the range of convergent cases seems to be
much wider, so that the natural iteration method might be interesting also
for the nonconventional applications mentioned above.

In this article we analyze a sufficient condition for the convergence
of the NIM. Such a condition is a requirement on the coefficients of the
cluster entropy expansion (obtained from the cumulant expansion through
a Möbius inversion(4)) and is shown to hold for quite a large variety
of approximations that are generally used to treat thermodynamic sys-
tems. Namely, we consider: a set of “plaquette” approximations on differ-
ent lattices,(8,12,27,29) Kikuchi’s B and C hierarchies for the square(30) and
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triangular(31) lattices, the cube approximation for the simple cubic lat-
tice. As far as the latter case is concerned, we actually analyze a generic
hypercube approximation on the hypercubic lattice in d dimensions, show-
ing that the sufficient condition holds for d � 3. Finally, we take into
account a recently proposed algorithm for the minimization of the CVM
free energy,(25) which allows several alternatives, depending on the possibil-
ity of upperbounding the free energy with convex (easy to be minimized)
functions. We show that one of the best choices is equivalent to the natu-
ral iteration method.

2. THE CVM FREE ENERGY

As mentioned in the previous Section, the approximate CVM entropy
can be written as a linear combination of cluster entropies(4)

S =
∑

α

aαSα, (1)

where the sum index α runs over all basic clusters and their subclusters. We
shall always consider clusters in this set only. The cluster entropies are defined
as usual

Sα =−
∑

xα

pα(xα) log pα(xα), (2)

where pα(xα) denotes the probability of the configuration xα for the clus-
ter α, the sum runs over all possible configurations, and the Boltzmann
constant k is set to 1 (entropy is measured in natural units). The coeffi-
cients can be determined recursively, starting from basic clusters down to
subclusters, making use of the following property(4)

∑

α′⊇α

aα′ =1, ∀α. (3)

Due to the fact that a basic cluster γ never contains (by definition)
another basic cluster, from the above formula we immediately get aγ =
1 ∀γ . Here and in the following, γ denotes basic clusters. The other coeffi-
cients, namely, those aα associated to subclusters, depend on the lattice
geometry, and in particular they do not have a definite sign. This fact
allows the CVM free energy to be nonconvex, and indeed this is the case
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for most physically interesting lattices. As far as the hamiltonian is con-
cerned, we assume that it can be written as a sum of contributions hγ

from all basic clusters as

H=
∑

γ

hγ (xγ ), (4)

where of course xγ denotes basic cluster configurations. Let us decide to
write the whole CVM free energy as a sum over basic clusters, splitting
entropy contributions from each subcluster among all basic clusters that
contain it (in equal parts). Assuming energies normalized to kT , we obtain

F [p]=
∑

γ

∑

xγ

pγ (xγ )



hγ (xγ )+ log pγ (xγ )+
∑

α⊂γ

bα log pγ (xα)



 , (5)

where

pγ (xα)≡
∑

xγ \α
pγ (xγ ). (6)

Let us notice that we have defined new coefficients bα ≡ aα/cα, where
cα denotes the number of basic clusters that contain α, and we have
expressed subcluster probability distributions as marginals of basic cluster
distributions, according to Eq. (6) (the sum runs over configurations xγ \α
of the basic cluster γ minus the subcluster α).

3. THE NATURAL ITERATION METHOD

In the above formulation, basic cluster distributions {pγ (xγ )} are the
variational parameters of the free energy (which is denoted in short by
F [p]), and the thermodynamic equilibrium state can be determined by
minimization with respect to these parameters, with suitable normalization
and compatibility constraints. By compatibility we mean that marginal dis-
tributions pγ (xα) must be the same for all basic clusters γ ⊃ α. Let us
notice that, for most thermodynamic applications, one usually makes some
homogeneity assumption on the system, and this generally reduces the
problem to only one or few different basic cluster distributions. Compat-
ibility constraints may be still necessary to impose the required symme-
try.(31) We go on with the nonhomogeneous formulation, without loss of
generality. The important thing is that, in any case, we deal with con-
straints that are linear in the probability distributions. According to the
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Lagrange method, we transform the constrained minimum problem with
respect to {pγ (xγ )} to a free minimum problem for an extended functional
which depends on additional parameters (Lagrange multipliers). Due to
linearity, the extended functional can be written in the form:

F̃ [p,λ]=F [p]−
∑

γ

∑

xγ

pγ (xγ )λγ (xγ ), (7)

where {λγ (xγ )} are the Lagrange multipliers. Of course, {λγ (xγ )} are not
all independent variables, but internal relationships are system-dependent,
and we do not analyze them. Let us only notice, for future use, that the
difference between the new functional and the original one (the last term
in Eq. (7)) is independent of the {pγ (xγ )} distributions, provided they sat-
isfy the required constraints.

The derivatives of F̃ with respect to pγ (xγ ) turn out to be

∂F̃ [p,λ]
∂pγ (xγ )

=hγ (xγ )+ log pγ (xγ )+
∑

α⊂γ

bα log pγ (xα)−λγ (xγ )+ const., (8)

where the additive constant is irrelevant and we can absorb it into the
Lagrange multipliers. Setting the above derivatives to zero resolves sta-
tionarization with respect to probability distributions. The natural itera-
tion method consists in rewriting such equations in a fixed point form,
that is

p̂γ (xγ )= eλγ (xγ )−hγ (xγ )
∏

α⊂γ

[
pγ (xα)

]−bα (9)

and then solving them by simple iteration. A new estimate of the basic
cluster probability distribution p̂γ (xγ ) is obtained from the previous one
pγ (xγ ) trough its marginals pγ (xα). The Lagrange multipliers must be
determined at each iteration, so that also p̂γ (xγ ) satisfies the required con-
straints. This job can be done in different ways by a nested procedure
(inner loop), for instance a Newton–Raphson method or a suitable fixed
point method.(31,32) In this paper we do not deal with the determination
of Lagrange multipliers, but we focus only on the convergence of the main
loop.
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4. SUFFICIENT CONDITION FOR THE CONVERGENCE

As usual for iterative algorithms designed to minimize functionals
that are bounded from below, a proof of convergence can be given by the
decreasing of the functional value at each iteration. This is actually the
case for the natural iteration method. Nevertheless, let us notice that con-
vergence does not prove that a fixed point is a global minimum, and not
even a minimum, but only a stationary point. Free energy decreasing is
only suggestive of the fact that the method “goes in the right direction”.
From experience, one observes that local minima are generally stable fixed
points, and this fact may be sometimes exploited to investigate metastable
states, whereas maxima and saddles are usually unstable. These facts are
likely to be related to the particular form of the NIM equations (9), but
they are not in the scope of the present paper.

Let us consider the free energy difference F [p̂] −F [p] for two subse-
quent iterations p, p̂, where F [p] is defined by Eqs. (5) and (6). Taking the
logarithm of both sides of Eq. (9), we can rewrite the NIM equations in
two different ways, that are

log p̂γ (xγ )=λγ (xγ )−hγ (xγ )−
∑

α⊂γ

bα log pγ (xα), (10)

∑

α⊂γ

bα log pγ (xα)=λγ (xγ )−hγ (xγ )− log p̂γ (xγ ). (11)

Let us replace the former into F [p̂] and the latter into F [p]. Remember-
ing that probability distributions satisfy the constraints, whence the latter
term on the right-hand side of Eq. (7) depends on Lagrange multipliers
only, we obtain

F [p̂]−F [p]=
∑

γ

∑

xγ




pγ (xγ ) log
p̂γ (xγ )

pγ (xγ )
− p̂γ (xγ )

∑

α⊂γ

bα log
pγ (xα)

p̂γ (xα)




 .

(12)

Let us consider the inequality log ξ � ξ − 1, where equality holds if and
only if ξ = 1. By applying this inequality to the first logarithm (the one
involving basic cluster probability distributions) in Eq. (12), and taking
into account that distributions are normalized, we obtain

F [p̂]−F [p]�−
∑

γ

∑

xγ

p̂γ (xγ )
∑

α⊂γ

bα log
pγ (xα)

p̂γ (xα)
, (13)
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where equality holds if and only if p̂γ (xγ ) = pγ (xγ ) ∀γ, xγ . The same
result could be obtained by observing that actually the upperbounded
terms coincide with (minus) the Kullbach–Liebler distances between the
probability distributions pγ (xγ ) and p̂γ (xγ ). If all subcluster coefficients
bα were negative, we could apply the same argument to all terms, and
the upperbound would be zero. Such a situation occurs for instance in
the Bethe(27) and Husimi tree(28) approximations, and the proof of conver-
gence would be complete. In a general case, we have to require a condition
on the bα coefficients. The basic idea is to “couple” smaller cluster terms
with a positive coefficient to larger cluster terms with a negative coeffi-
cient, yielding a sum of Kullbach–Liebler distances (some between condi-
tional probability distributions) with negative coefficients, which can then
be upperbounded by zero. The details are given in the following.

Theorem (sufficient condition for the convergence). Let {bα−|α+}
be a set of nonnegative coefficients (allocation coefficients), defined for each
pair of subclusters α−, α+, such that bα− < 0, bα+ > 0, and α− ⊃ α+. If the
following properties hold for all basic clusters γ :

bα+ =
∑

α+⊂α−⊂γ

bα−|α+ , ∀α+ ⊂γ, (14)

−bα− �
∑

α+⊂α−
bα−|α+ , ∀α− ⊂γ, (15)

then

F [p̂]−F [p]�0, (16)

F [p̂]−F [p]=0 ⇐⇒ p̂ =p. (17)

Equation (16) means that the free energy can be decreasing or constant
during the procedure, while Eq. (17) ensures that it is constant only if the
procedure has already reached convergence (i.e., the free energy can only
decrease during the procedure). A relevant consequence of Eq. (17) is that
it prevents the dynamical system defined by the NIM equations from hav-
ing limit cycles at constant free energy, which could occur in principle.

Proof. Let us consider the right-hand side of Eq. (13) and split the
sum over subclusters α ⊂γ in two sums over subclusters α+, α− with pos-
itive or negative coefficients, respectively. Positive coefficients bα+ can be
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replaced by Eq. (14), while, according to Eq. (15), negative coefficients can
be replaced by

bα− =−
∑

α+⊂α−
bα−|α+ −dα− (18)

for certain dα− �0. Defining, for each α− ⊃α+, the conditional probability
distributions

pγ (xα−|xα+)≡ pγ (xα−)

pγ (xα+)
, (19)

after some simple manipulations we obtain

−
∑

α⊂γ

bα log
pγ (xα)

p̂γ (xα)
=

∑

α−⊂γ

[
dα− log

pγ (xα−)

p̂γ (xα−)

+
∑

α+⊂α−
bα−|α+ log

pγ (xα−|xα+)

p̂γ (xα−|xα+)

]
. (20)

The logarithm inequality log ξ � ξ − 1 can now be applied to all terms
in the previous equation, because all coefficients are positive (or equiv-
alently we get a sum of Kullbach–Liebler terms), and the zero upper-
bound of Eq. (16) is obtained. As previously mentioned, Eq. (17) is proved
by the fact that the logarithm inequality holds if and only if ξ = 1, i.e.,
the Kullbach–Liebler distance between two probability distributions is zero
if and only if the two distributions are equal.

5. SOME PARTICULAR CASES

In this section we consider some particular choices of basic clusters,
that is, some particular CVM approximations for regular lattices on which
several model systems are defined.

5.1. “Plaquette” Approximations

By “plaquette” approximations we mean a class of approximations in
which basic clusters are of a unique type (which we denote as plaquette,
for example, a square on a square lattice), while subclusters with nonzero
coefficients are only single sites and nearest neighbor pairs. Let us denote
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such clusters by 1 and 2, respectively, and, according to the notation intro-
duced in Section 2, let us denote by a1 and a2 the coefficients of the clus-
ter entropy expansion, by c1 and c2 the numbers of plaquettes sharing a
given subcluster, and by bi =ai/ci the normalized coefficients. In this class
of approximations, it is possible to show that all the coefficients can be
obtained as a function of c1, c2 and of the lattice coordination number q.
Making use of Eq. (3), and remembering that basic clusters (plaquettes)
have unit a-coefficient, we can write

a2 + c2 =1, (21)

a1 +qa2 + c1 =1, (22)

from which bi =ai/ci are easily obtained:

b2 = −c2 −1
c2

, (23)

b1 = q(c2 −1)− (c1 −1)

c1
. (24)

Then, we have to impose the sufficient conditions on the coefficients,
Eqs. (14) and (15). From Eq. (23) we easily see that b2 � 0, which is ok
for upperbounding, but usually b1 � 0. We then have to couple each site
to pairs that contain it and are contained in a given plaquette. Let us
adopt the strategy of splitting the site coefficient among such pairs in
equal parts, so that, being b2|1 the only allocation coefficient and r the
number of pairs, Eqs. (14) and (15) read

b1 = rb2|1, (25)

−b2 � 2b2|1. (26)

The allocation coefficient may be easily eliminated, yielding the single con-
dition

b1

r
+ b2

2
�0. (27)

It is possible to show that also the r parameter depends on c1, c2, q only.
Let us imagine to multiply the number q of nearest–neighbor pairs sharing
a site times the number c2 of plaquettes sharing a pair. It is easy to realize
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Table I. Coefficients for Plaquette Approximations

Lattice Plaquette q c2 c1 q(c2 −1) 2(c1 −1)

Square Square 4 2 4 4 6

Triangular Triangle 6 2 6 6 10

Honeycomb Hexagon 3 2 3 3 4

sc Square 6 4 12 18 22

fcc Triangle 12 4 24 36 46
fcc Tetrahedron 12 2 8 12 14

The first two columns report, respectively, the lattice and plaquette
(basic cluster) type. The following three columns display the inde-
pendent coefficients: q (coordination number), c2, c1 (number of pla-
quettes sharing a given pair, site). The last two columns verify the
sufficient condition q(c2 −1)<2(c1 −1).

that in this way we have overcounted r times the number c1 of plaquettes
sharing the given site, i.e.,

rc1 =qc2. (28)

With the above manipulation, the condition (27) can be rewritten as

q(c2 −1)�2(c1 −1). (29)

In this form, we can easily verify its validity, which is done in Table I
for a set of typical plaquette approximations. We have considered: the 2d
square, triangular, and honeycomb lattices with a 4-site square,(12,29) a
3-site triangle,(29) and an elementary hexagon as basic cluster, respectively,
the simple cubic (sc) lattice with a 4-site square(29) as basic cluster, and
the face-centered cubic (fcc) lattice with a 3-site triangle(29) or a 4-site
tetrahedron(8,27) as basic cluster.

5.2. B and C Hierarchies

The B and C hierarchies, originally proposed by Kikuchi and Brush,(30)

are series of approximations with increasing cluster size, suitable for 2d
square(30) and triangular(31) lattices. They are interesting mainly because
they converge towards the exact free energy, in spite of the fact that the
cluster size increases only in one direction. This result has been proved rig-
orously only for the C hierarchy,(3) but there are numerical evidences for
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Fig. 1. Basic cluster and subclusters for the B hierarchy (left side) and for the corresponding
(triangle) plaquette approximation.

both.(30,31) Such results(3) are related to the transfer matrix concept: As the
Bethe approximation solves exactly an Ising-like chain, the CVM, with infi-
nitely long 1d stripes as basic clusters (to which the B and C hierarchies
tend), solves exactly a 2d lattice. Here we are interested in showing that these
approximations verify the sufficient condition for the convergence discussed
above. Let us consider for instance the B hierarchy on the triangular lattice
(a completely analogous treatment holds for the C hierarchy and/or for the
square lattice). The basic clusters, shown in Fig. 1 (top row, left column), are
made up of a sequence of L− 1 up- and L down-pointing triangles, where
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L is an adjustable parameter. Of course, also corresponding clusters with
L up- and L− 1 down-pointing triangles are allowed, but all basic clusters
always extend only in one direction. This choice can be viewed as a gener-
alization of the triangle plaquette approximation (see Fig. 1, top row, right
column), where of course also up-pointing triangles are included in the set
of basic clusters. In the following rows of Fig. 1, also the subclusters of the
given basic cluster, having nonzero coefficients in the cluster entropy expan-
sion (a-coefficients), are displayed. They are divided in pair-like and site-like
subclusters, in that they can be put in one-to-one correspondence with pair
and site subclusters for the triangle plaquette approximations. Such analogy
is not only a pictorial one. In fact, it is possible to show (for instance mak-
ing use of Eq. (3), but see also ref. 30) that the a-coefficients are a2 =−1
for pair-like clusters and a1 =1 for site-like clusters, like for the triangle pla-
quette approximation. The same holds for c-coefficients, i.e., the numbers of
basic clusters sharing a given subclusters, which turn out to be c2 = 2 and
c1 =6, respectively, whence b2 =−1/2 and b1 =1/6. Finally, from Fig. 1 one
easily sees that also the same “allocation” technique as for the plaquette
approximation can be used. Inside a given basic cluster, each site-like sub-
cluster is shared by r =2 pair-like clusters, and each pair-like cluster contains
2 site-like subclusters, whence inequality (27) is satisfied.

5.3. Hypercube Approximation in d Dimensions

Finally, let us consider the case of a hypercubic lattice in d dimen-
sions, and let us choose a d-dimensional hypercube (d-cube) as basic
cluster. Of course, the relevant cases are d =2,3, the former of which coin-
cides with the square plaquette approximation, mentioned above, but the
interest of a general treatment will be clearer later. It is possible to show,
by repeated use of Eq. (3), that clusters with nonzero coefficients are only
i-cubes, for i =1, . . . , d, and the i-cube coefficient in d dimensions is a

(d)
i =

(−1)d−i . Moreover, the number of d-cubes sharing a given i-cube (in d

dimensions) is c
(d)
i = 2d−i . As a consequence, the normalized coefficients

turn out to be

b
(d)
i =

(
−1

2

)d−i

. (30)

Let us now impose the sufficient conditions, Eqs. (14) and (15). Let us
notice that the positive coefficients, those who give problems for upper-
bounding, have the i index with the same parity as d, that is i = d − 2,
d −4, · · · Then we can couple each i-cube with (i +1)-cubes that contain it
and are contained in a given d-cube. As for plaquette approximations, let
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us split the i-cube coefficient in equal parts, so that we have a single b
(d)

i+1|i
allocation coefficient. We still have to observe that each i-cube is shared
by d − i (i +1)-cubes contained in the same d-cube (the equivalent of the
r parameter for plaquette approximations), and that each (i +1)-cube con-
tains 2(i +1) different i-cubes (the equivalent of 2 sites in a pair). We can
then rewrite Eqs. (14) and (15) as

b
(d)
i = (d − i) b

(d)

i+1|i , (31)

−b
(d)

i+1 � 2(i +1) b
(d)

i+1|i . (32)

By eliminating the allocation coefficient, we obtain

b
(d)
i

d − i
+ b

(d)

i+1

2(i +1)
�0, (33)

which, replacing Eq. (30) and taking into account that d − i is always even
(as previously mentioned), becomes

2i �d −1. (34)

Such inequality becomes more and more difficult to be satisfied as the sub-
cluster index i increases. Therefore, we have to consider the worst case,
that is i =d −2, leading to

d �3. (35)

This results essentially proves the convergence for d = 3, because the d =
2 case coincides with the square plaquette approximation. Nevertheless, it
is mainly interesting in that it gives us the opportunity to experiment the
natural iteration method in a case in which the sufficient condition is not
verified. We have implemented the procedure for the simple Ising model
on the d = 4 hypercubic lattice, easily finding cases in which the behavior
is nonconvergent (oscillating). This fact lead us to conjecture that actually
the sufficient condition might be also a necessary one.

6. AN EQUIVALENT FORMULATION

In a recent paper,(25) a general method for the minimization of non-
convex functionals, relying on the existence of suitable upperbounds to the
functional to be minimized, is proposed and applied to the case of the
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CVM free energy. Different possible choices for the upperbounding func-
tional are investigated. Hereafter, we show that one choice proposed there,
which by the way turns out to be quite convenient in terms of computa-
tion time, is equivalent to the natural iteration method. First, let us briefly
recall the general method, which is based on the following.

Theorem. Let F [p] be a differentiable functional in the set of vari-
ables p, defined in some domain �, and F̄ [p,p′] an auxiliary differentiable
functional in a pair of variable sets p,p′, defined in the domain �2, as

F̄ [p,p′]≡F [p′]+D[p,p′], (36)

where D[p,p′] is some kind of distance functional, i.e., satisfying the fol-
lowing requirements:

D[p,p′]�0, (37)

D[p,p′]=0 ⇐⇒ p′ =p. (38)

In other words, the auxiliary functional is an upperbound to the original
functional, and equality holds if and only if the two arguments of the for-
mer are equal. Moreover, let the auxiliary functional have a unique min-
imum with respect to p′ for each fixed p. Then the application ϕ : p 	→ p̂

defined by

p̂ =arg min
p′∈�

F̄ [p,p′] (39)

enjoys the properties

F [p̂]�F [p], (40)

F [p̂]=F [p] ⇐⇒ p̂ =p, (41)

p̂ =p �⇒ ∇F [p]=0. (42)

Proof. It is easy to obtain the following inequality chain

F [p̂]� F̄ [p, p̂]� F̄ [p,p]=F [p], (43)

where both inequalities hold as equalities if and only if p̂ = p. The for-
mer is a direct consequence of the properties of the distance functional,
Eqs. (37) and (38); the latter is a consequence of the definition of ϕ,
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Eq. (39), and of the fact that F̄ [p,p′] has a unique minimum with respect
to p′; the equality descends from Eq. (38). This proves Eqs. (40) and (41).
Eq. (42) is proved by differentiability, together with the properties of the
distance functional, Eqs. (37) and (38).

Let us spend a few words to discuss the (weak) sense in which the
above theorem provides a method to minimize the original functional. We
have shown that (i) the mapping ϕ lowers the functional value at each
step, and (ii) its fixed points are stationary points of the original func-
tional. Therefore, we are “reasonably allowed to expect” that the method
converges to local minima, even if, as already mentioned for the natural
iteration method, we cannot a priori exclude convergence to other kinds
of stationary points.

Let us now consider the distance functional defined by

D[p,p′]≡
∑

γ

∑

xγ

p′
γ (xγ )

∑

α⊂γ

bα log
pγ (xα)

p′
γ (xα)

. (44)

It turns out that this is a suitable distance functional, satisfying Eqs. (37)
and (38), in that it coincides with (minus) the right-hand side of Eq. (13),
which we have proved to be upperbounded by zero, as a sufficient condi-
tion for the convergence of the NIM. According to Eq. (36), where F [p′]
is taken to be the CVM free energy (5), we obtain the following auxiliary
functional:

F̄ [p,p′]=
∑

γ

∑

xγ

p′
γ (xγ )



hγ (xγ )+ log p′
γ (xγ )+

∑

α⊂γ

bα log pγ (xα)



 . (45)

Let us observe that basic cluster probability distributions now appear as
p′, whereas subcluster probability distributions as p. In this way, F [p,p′]
turns out to be convex with respect to p′, therefore, if it has a station-
ary point, it is also unique, and is a minimum. Performing stationarization
of this functional with respect to p′, with the usual linear constraints, in
complete analogy to the calculation shown in Section 3, one exactly recov-
ers the NIM equations (9), which in this way can be used to define the
application ϕ.

7. CONCLUSIONS

Let us finally summarize our results. We have investigated on the
convergence of the natural iteration method, proposed by Kikuchi as a
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minimization procedure for cluster variational free energies and widely
employed in a lot of applications of the CVM. We have discussed a condi-
tion on the coefficients of the cluster entropy expansion, which is sufficient
to prove that the free energy decreases at each iteration, ensuring conver-
gence of the method. Such a condition is based on the idea of pairing
subcluster entropies with a positive coefficient to larger subcluster terms
with a negative coefficient, yielding a set of conditional entropy terms with
negative coefficients. It had already been proved by Kikuchi in the origi-
nal paper(27) that negative coefficient terms give decreasing contributions
to the free energy. We have also taken into account a set of common CVM
approximations defined on various regular lattices, frequently encountered
in applications, showing that the sufficient condition is always satisfied.
In particular, we have devoted some attention to the class of hypercube
approximations on the generic (d-dimensional) hypercubic lattice, show-
ing that the sufficient condition is verified for d � 3. We have also imple-
mented the natural iteration method for d =4 on the simple Ising model,
and found that several (random as well as uniform) initial conditions give
rise to nonconvergent (oscillating) behavior. This fact has led us to conjec-
ture that the sufficient condition might be also a necessary one. Finally, we
have established a connection with a general method for the minimization
of nonconvex functionals, which has been recently applied to the CVM
free energy.(25) Such a method is based on the existence of suitable upper-
bounding functionals to the functional to be minimized. In ref. 25, several
choices of upperbounding functionals are proposed and applied to simple
inhomogeneous systems. We have shown that one of the upperbounding
choices proposed there (indeed quite a good choice in terms of computa-
tion time) is equivalent to Kikuchi’s natural iteration method. It turns out
explicitly that the upperbounding condition implies free energy decreasing,
whence convergence.
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